Banking multiplier background
Brian Hanley
Brian.Hanley@ieee.org
December, 2011

\[m = \sum_{i=1}^{n} (1 - R)^i \]
We begin with the classical banking multiplier

• The classic banking multiplier starts with the concept of reserves.

• Reserves allow new money to be created by banks through the issuance of loans. This happens because the requirement for physical money representation is eliminated.

• The banking multiplier is taught as:

\[m = \frac{1}{R} \] \hspace{1cm} (1)

where \(R \) = capital reserve fraction
How does banking create money?

- To understand this we will use a simplified system with Zeke and Jane and two banks, bank 1 and bank 2.
- Zeke borrows from Bank 1 and deposits to Bank 2.
- Jane borrows from Bank 2 and deposits to Bank 1.
- These banks have a 5% reserve requirement.

- We will start with an initial deposit of $100 into Bank 1. With 5% reserve, Bank 1 can loan $95 to Zeke.
What happens with the first loan of $95?

- Zeke deposits his newly created $95 into Bank 2.

- So now Bank 2 can loan Jane 95% of that new deposit originating from Zeke’s loan he got from Bank 1. 95% of $95 = $90.25
And so the $90.25 Jane deposits into Bank 1 becomes the basis for another loan, and the cycle repeats.

- Jane deposits her newly created $90.25 into Bank 1.

- So now Bank 1 can loan Zeke another 95% of that $90.25 new deposit originating from Jane’s loan she got from Bank 2. 95% of $90.25 = $85.74
We can visualize this series.

New money

Bank 1

95% loan to Jane deposited in Bank 1

Bank 2

95% loan to Zeke deposited in Bank 2

Each time a loan is made, it becomes a new deposit, and adds to the capital base of a bank.
$100.00

$ 95.00	$ 56.88	$ 34.06	$ 20.39	$ 12.21	$ 7.31	$ 4.38
$ 90.25	$ 54.04	$ 32.35	$ 19.37	$ 11.60	$ 6.94	$ 4.16
$ 85.74	$ 51.33	$ 30.74	$ 18.40	$ 11.02	$ 6.60	$ 3.95
$ 81.45	$ 48.77	$ 29.20	$ 17.48	$ 10.47	$ 6.27	$ 3.75
$ 77.38	$ 46.33	$ 27.74	$ 16.61	$ 9.94	$ 5.95	$ 3.56
$ 73.51	$ 44.01	$ 26.35	$ 15.78	$ 9.45	$ 5.66	$ 3.39
$ 69.83	$ 41.81	$ 25.03	$ 14.99	$ 8.97	$ 5.37	$ 3.22
$ 66.34	$ 39.72	$ 23.78	$ 14.24	$ 8.53	$ 5.10	$ 3.06
$ 63.02	$ 37.74	$ 22.59	$ 13.53	$ 8.10	$ 4.85	$ 2.90
$ 59.87	$ 35.85	$ 21.46	$ 12.85	$ 7.69	$ 4.61	$ 2.76

Table of deposits to banks 1 and 2

In this table, \(n = 70 \) and \(R = 5\% \)
Mathematically, the banking multiplier \((m)\) is a summation

\[m = \sum_{i=1}^{n} (1 - R)^i \]

(2)

- where \(R\) = capital reserve fraction
- \(i\) = iteration number on loans/deposits
- \(n\) = iteration limit

This equation has an asymptote at equation 1.

\[m = \frac{1}{R} \]

(1)
How does this equation behave?

\[\sum_{i=1}^{10} (0.95)^i = 8.623998154 \]

\[\sum_{i=1}^{20} (0.95)^i = 13.18876747 \]

\[\sum_{i=1}^{40} (0.95)^i = 17.55826903 \]

\[\sum_{i=1}^{80} (0.95)^i = 19.68620789 \]

Etc.
We can render this banking multiplier (m) as an isosurface

- This isosurface plot shows how the money multiplier varies as iterations (n) go from 1 to 100.
- The reserve (R) parameter starts at 2% and increases to 10%.
- Most reserves in the USA and EU are around 5% to 7%.
- In the GFC, some formal reserves dropped as low as 2.4%. (Outside of central banks.)

$$m = \sum_{i=1}^{n} (1 - R)^i$$